CUBE: An Information-optimized Parallel Cosmological N -body Algorithm
نویسندگان
چکیده
منابع مشابه
The Chamomile Scheme: An Optimized Algorithm for N-body simulations on Programmable Graphics Processing Units
We present an algorithm named “Chamomile Scheme”. The scheme is fully optimized for calculating gravitational interactions on the latest programmable Graphics Processing Unit (GPU), NVIDIA GeForce8800GTX, which has (a) small but fast shared memories (16 K Bytes × 16) with no broadcasting mechanism and (b) floating point arithmetic hardware of 500 Gflop/s but only for single precision. Based on ...
متن کاملAn optimized parallel LSQR algorithm for seismic tomography
The LSQR algorithm developed by Paige and Saunders (1982) is considered one of the most efficient and stable methods for solving large, sparse, and ill-posed linear (or linearized) systems. In seismic tomography, the LSQR method has been widely used in solving linearized inversion problems. As the amount of seismic observations increase and tomographic techniques advance, the size of inversion ...
متن کاملAn optimized parallel LSQR algorithm for large-scale seismic tomography
Seismic recordings represent convolution of a source wavelet with physical properties of the Earth’s interior, thus different components of the seismic recordings (e.g. traveltime of seismic phases, amplitudes and seismic waveforms) can be used to image structures and compositions of the Earth (e.g. Iyer and Hirahara, 1993; Nolet, 2008; Romanowicz, 2003; Stein and Wysession, 2002). By using dif...
متن کاملGalaxy tracers in cosmological N-body simulations
Galaxies, and the large-scale structure that they trace, grew via gravitational instability from small amplitude Gaussian density fluctuations. This nonlinear process can be studied by means of N -body simulations. The main target of this approach is to evaluate various cosmological theories of structure formation. Unfortunately, the dynamical range of current cosmological simulations is inadeq...
متن کاملDiscreteness effects in cosmological N-body simulations
An estimate of the convergence radius of a simulated CDM halo is obtained under the assumption that the peak phase-space density in the system is set by discreteness effects that operate prior to relaxation. The predicted convergence radii are approximately a factor 2 larger than those estimated for numerical convergence studies. A toy model is used to study the formation of sheets of the cosmi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Astrophysical Journal Supplement Series
سال: 2018
ISSN: 1538-4365
DOI: 10.3847/1538-4365/aac830